АО БСКБ «Нефтехимавтоматика»

Аппарат для определения старения битумов под действием давления и температуры $\underline{\mathcal{N}}^{0}$ ПСБД-10 Программа и методика аттестации $\underline{\mathcal{N}}^{0}$ АИФ 2.772.028 МА

Содержание

1 ОБЪЕКТ АТТЕСТАЦИИ	2
2 ЦЕЛИ И ЗАДАЧИ АТТЕСТАЦИИ	
3 ОБЪЁМ АТТЕСТАЦИИ	2
4 УСЛОВИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ АТТЕСТАЦИИ	2
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	3
6 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АТТЕСТАЦ	ии 3
7 ОБЩИЕ ПОЛОЖЕНИЯ	3
8 ОЦЕНИВАЕМЫЕ ХАРАКТЕРИСТИКИ И РАСЧЁТНЫЕ СООТНОШЕНИЯ	4
9 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОВЕРКЕ	4
10 ОБРАБОТКА, АНАЛИЗ И ОЦЕНКА РЕЗУЛЬТАТОВ АТТЕСТАЦИИ	8
11 ТРЕГОВАНИЯ К ОТИЁТНОСТИ	O

1 Объект аттестации

- 1.1 Данный документ распространяется на аппараты для определения старения битумных вяжущих под действием давления и температуры $\Lambda u + me \Lambda^{\otimes}$ ПСБД-10 (далее аппарат).
- 1.2 Комплектность аппарата при аттестации должна соответствовать его эксплуатационной документации.

2 Цели и задачи аттестации

При аттестации аппарата определяют соответствие технического состояния аппарата требованиям его эксплуатационной документации и возможность реализовывать методы по ГОСТ Р 58400.5, ASTM D6521.

3 Объём аттестации

При проведении аттестации должны выполняться операции в последовательности, указанной в таблице 1. Периодичность аттестации аппарата 1 год.

Таблица 1 – Операции при аттестации

Наименование операции	Номер пункта	Обязательность проведения операций при аттестации			
	MA	первичной	периодической	повторной	
Экспертиза эксплуатационной документации	9.2	Да	Нет	Нет	
Внешний осмотр	9.3	Да	Да	Да	
Опробование	9.4	Да	Да	Да	
Проверка точности измерения давления	9.5	Да	Да	Да	
Проверка точности измерения температуры	9.6	Да	Да	Да	
Проверка погрешности поддержания температуры в камере в режиме испытания	9.7	Да	Да	Да	
Проверка времени сброса давления	9.7	Да	Да	Да	
Проверка измерения времени испытания	9.7	Да	Да	Да	
Идентификация программного обеспечения	9.8	Да	Да	Да	

4 Условия и порядок выполнения аттестации

- 4.1 Аттестацию необходимо проводить в следующих условиях:
- 4.1.1 Параметры окружающей среды:
- 1) температура окружающего воздуха, °C: от +10 до +35;
- 2) относительная влажность воздуха, не более, %: 80;
- 4.1.2 Параметры питания:
- 1) напряжение от 187 до 242В;
- 2) частота переменного тока от 49 до 51 Гц.
- 4.1.3 Место установки аппарата должно исключать воздействие тряски, ударов и вибраций, влияющих на нормальную работу.
- 4.1.4 Аппарат необходимо установить строго горизонтально при помощи уровня.

4.2 Условия прерывания (прекращения) аттестации указаны в тексте операций.

5 Требования безопасности

- 5.1 При проведении аттестации необходимо выполнять следующие требования безопасности:
- 1) клемма «Земля» на задней стенке аппарата должна быть подключена к внешней заземляющей шине;
- 2) лица, допущенные к работе с аппаратом, должны иметь подготовку по технике безопасности при работе с устройствами подобного типа;
- 3) повторное включение аппарата допускается не ранее чем через 5 минут после выключения;
- 4) во избежание получения ожогов запрещается прикасаться открытыми участками тела к горячим участкам аппарата во время работы;
- 5) при работе с аппаратом обслуживающий персонал должен выполнять общие правила техники безопасности при работе с электрическими установками с напряжением до 1000 В, а также с нефтепродуктами с высокой температурой во избежание ожога;
- 6) при использовании измерительного инструмента и приборов должны выполняться требования безопасности в соответствии с эксплуатационной документацией на них.
- 5.2 К аттестации не допускаются аппараты, не удовлетворяющие требованиям техники безопасности и технически неисправные.

6 Материально-техническое и метрологическое обеспечение аттестации

- 6.1 Средства измерений, применяемые при аттестации, должны пройти государственную поверку и иметь свидетельство о поверке (протоколы, клейма) с не истекшим сроком действия.
- 6.2 Средства измерений при аттестации аппарата, приведены в таблице 2.

Таблица 2 – Перечень применяемых при аттестации средств измерения

Оборудование	Диапазон	Точность	Назначение	Рекомендуемые СИ
			Проверка датчика	Термометр ЛТ-300
Термометр	от 90 до 110°C	0,1°C	температуры	
			камеры	
Манометр	от 2 до 2,2МПа	±0,1%	Проверка датчика давления	Манометр электронный для точных измерений МТИ-100/М1-ДИ- ИМ2,5М-2,5МПа ¹
Секундомер	020ч	1c	Проверка времени испытания	Секундомер «Интеграл C-01»

- 6.3 Средства измерения должны обеспечивать требуемую точность измерения.
- 6.4 В качестве образцов выбирают продукты, которые используются при эксплуатации аппарата.

7 Общие положения

- 7.1 Организация и порядок проведения аттестации должны соответствовать требованиям, установленным в ГОСТ Р 8.568-2017.
- 7.2 При аттестации аппарата определяют:
- 1) соответствие точностных характеристик требованиям нормативной документации, указанных в таблице 3 АИФ 2.772.028 РЭ;
- 2) возможность аппарата воспроизводить и поддерживать условия испытаний образцов в соответствии с требованиями нормативной документации на методы испытаний, указанных в п.2.1 АИФ 2.772.028 РЭ;

¹ Данные для заказа у поставщика преобразователя давления эталонного: МТИ-100/М1-ДИ-ИМ2,5М-2,5МПа Б1 Ф01 С3 М20 ТУ 4212-128-13282997-2015. Для подключения манометра необходим переходник с М20х1,5 на G¼ (переходник и прокладка для манометра).

- 3) соответствие внешнего вида, комплектности и технического состояния средств измерений требованиям эксплуатационной документации на них;
- 4) наличие поверки средств измерений, применяемых при аттестации.
- 7.3 Требования по безопасности приведены в п.5.
- 7.4 К проведению аттестации аппарата допускаются лица, прошедшие инструктаж по технике безопасности, ознакомившиеся с настоящей инструкцией и технической документацией на аттестуемый аппарат.

8 Оцениваемые характеристики и расчётные соотношения

Оцениваемые характеристики и расчётные соотношения приведены в таблице 3.

Таблица 3 - Оцениваемые характеристики

Характеристика	Формула расчёта	Используемые показатели
Точность	$\Delta T_1 = T_{\kappa a M e p \omega} - T_{o 6 p}$	где ΔT_1 – разница показаний датчика температуры
измерения		камеры и образцового термометра, °C;
температуры		Т _{камеры} – показания датчика температуры камеры, °C;
		Т _{обр} – показания образцового термометра, °C.
		Отклонение показаний аппарата от показаний
		образцового термометра (погрешность измерения)
		не должно превышать ±1°С плюс погрешность
		образцового средства измерения.
Точность	$\Delta P_1 = P_{\text{камеры}} - (P_{\text{обр}} -$	где ΔP_1 – разница показаний датчика давления
измерения	Р _{атм})	камеры и образцового манометра, кПа;
давления		Р _{камеры} – показания датчика давления камеры, кПа;
		Р _{обр} – показания образцового манометра, кПа;
		Р _{атм} – атмосферное давление, кПа.
		Отклонение показаний аппарата от показаний
		образцового манометра (погрешность измерения) не
		должно превышать ±20 кПа плюс погрешность
		образцового средства измерения.
Точность		Подсчет времени ошибки поддержания температуры
поддержания		в камере производится в автоматическом режиме во
температуры в		время испытания и не должен превышать 60 мин.
камере в		
режиме		
испытания		
Точность	$\Delta \tau_{\text{исп}} = 1200 \text{ мин} - \tau_{\text{обр}}$	где $\Delta au_{исn}$ – разница показаний времени испытания и
измерения		образцового секундомера, мин:с;
времени		т _{обр} – показания образцового секундомера, мин:с.
испытания		Отклонение показаний аппарата от показаний
		образцового секундомера не должна превышать
		±10мин плюс погрешность образцового средства
		измерения.
Время сброса		Время сброса давления должно быть в диапазоне 9±1
давления		мин.

9 Выполнение работ по проверке

9.1 Условия проведения аттестации

Выполнить требования п. 4.1.

9.2 Экспертиза эксплуатационной документации

На рассмотрение представляют:

- 1) техническое описание и руководство по эксплуатации испытательного оборудования;
- 2) паспорта на комплектующие изделия;
- 3) свидетельства о поверке СИ, используемых для проведения испытаний.

Содержание работ по рассмотрению документации и методика приведены в таблице 4.

Таблица 4 - Содержание работ по рассмотрению документации и методика рассмотрения

Содержание работ по рассмотрению представленной документации	Указания по методике рассмотрения		
Оценка эксплуатационной документации с точки зрения удобства ее использования потребителем	Эксплуатационная документация должна быть составлена в соответствии с ГОСТ 2.601 и ГОСТ 2.610. Проверяют возможность использования документации исполнителем и обслуживающим персоналом. Проверяют наличие в эксплуатационной документации указаний по настройке и устранению возможных неисправностей испытательного оборудования.		
Предварительная оценка возможности проведения исследований технических характеристик Установление действия свидетельств о поверке	Проводят оценку метрологического обеспечения испытуемого оборудования, а также определение оптимального интервала времени между периодическими аттестациями. Устанавливают, что срок действия свидетельств о поверке не истек.		

9.3 Внешний осмотр

Внешний осмотр производят путем визуальной проверки:

- 1) внешнего вида аппарата и ее сборочных единиц;
- 2) наличия комплектности эксплуатационной документации;
- 3) комплектности и маркировки аппарата в соответствии с эксплуатационной документацией;
- 4) отсутствия явных механических повреждений и дефектов.

9.4 Опробование

При опробовании проверяют:

- 1) соблюдение требований безопасности и условий аттестации;
- 2) возможность включения, выключения и функционирования аппарата;
- 3) работоспособность органов управления;
- 4) функционирование дисплея;
- 5) правильность и надежность заземления.

Если в процессе опробования на дисплее аппарата появилось сообщение об обнаруженной неисправности, то аппарат считается технически неисправным.

- 9.5 Проверка точности измерения давления
- 9.5.1 Записать показания манометра (атмосферное давление) Ратм в таблицу 6.
- 9.5.2 Отвинтить заглушку штуцера для образцового датчика, расположенный на задней стороне аппарата (см. АИФ 2.772.028 РЭ, рисунок 2).
- 9.5.3 Установить на штуцер образцовый манометр или преобразователь давления (далее манометр), используя переходник и прокладку для манометра из комплекта принадлежностей.
- 9.5.4 Закрыть крышку камеры, установить стяжку, закрепить ее защелкой и закрыть шаровый кран на крышке камеры (рисунок 1, АИФ 2.772.028 РЭ).
- 9.5.5 Закрыть теплоизоляционную крышку на защелку (рисунок 1, АИФ 2.772.028 РЭ).
- 9.5.6 Включить аппарат и в режиме ожидания нажмите клавишу «Режим», чтобы открыть меню пользователя.
- 9.5.7 Осуществить переход «Меню»-«Настройки»-«Тест оборудования»-«Набрать давление».
- 9.5.8 Дождаться окончания процедуры набора давления.

- 9.5.9 Снять показания датчика давления и манометра через каждые 5 минут в течение 30 минут и заносите их в таблицу 6.
- 9.5.10 Нажать клавишу «Пуск», чтобы сбросить давление.
- 9.5.11 Выключить аппарат после полного сброса давления в камере.
- 9.5.12 Вычислить погрешность измерения давления по следующей формуле:

$$\Delta P_1 = P_{\text{камеры}} - (P_{\text{обр}} - P_{\text{атм}}),$$

где ΔP_1 – разница показаний датчика давления камеры и образцового манометра, кПа,

Ркамеры – показания датчика давления камеры, кПа,

Робр – показания образцового манометра, кПа,

Ратм – атмосферное давление, кПа.

- 9.5.13 $|\Delta P_1|$ не должно превышать $|20+\alpha|$ кПа, где α погрешность образцового манометра, в противном случае необходимо провести калибровку датчика давления. Вычисленные значения занести в таблицу 6.
- 9.5.14 Вычислить погрешность поддержания давления по следующей формуле:

$$\Delta P_2 = 2100 \text{ кПа } - (P_{\text{обр}} - P_{\text{атм}}),$$

где ΔP_2 – точность поддержания давления 2,1 МПа, кПа,

Робр – показания образцового манометра, кПа,

Ратм – атмосферное давление, кПа.

- 9.5.15 Значение $|\Delta P_2|$ не должно превышать 100 кПа. Вычисленные значения занести в таблицу 6.
- 9.6 Проверка точности измерения температуры
- 9.6.1 При проверке точности измерения температуры используется специальное приспособление проверочное из комплекта поставки(см. рисунок 1).

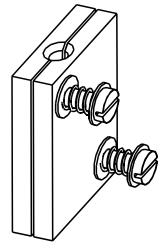


Рисунок 1 – Приспособление проверочное

9.6.2 Установить приспособление проверочное на датчик температуры камеры до упора, так чтобы он был параллелен боковой поверхности камеры. Предварительно поместив в гнезда для датчиков приспособления проверочного термопасту. Приспособление проверочное не должно касаться стенок камеры и его винты должны быть направлены к центру камеры (см.рисунок 2).

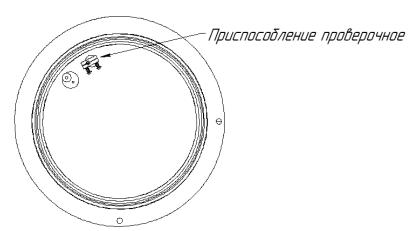


Рисунок 2 – Установка приспособления проверочного (вид сверху)

- 9.6.3 Закрыть камеру калибровочной крышкой, совмещая ее фиксирующие элементы в соответствующих отверстиях камеры.
- 9.6.4 Снять втулку (2) с калибровочной крышки и продеть через отверстие во втулке чувствительный элемент образцового термометра (1).
- 9.6.5 Удерживая втулку в верхнем положении, установить чувствительный элемент образцового термометра через отверстие в калибровочной крышке (3) в приспособление проверочное (4) до упора, установленное на датчик температуры камеры (см. рисунок 3).
- 9.6.6 Установите втулку в отверстие в калибровочной крышке, совместив плоскую грань втулки с плоской гранью отверстия в крышке.

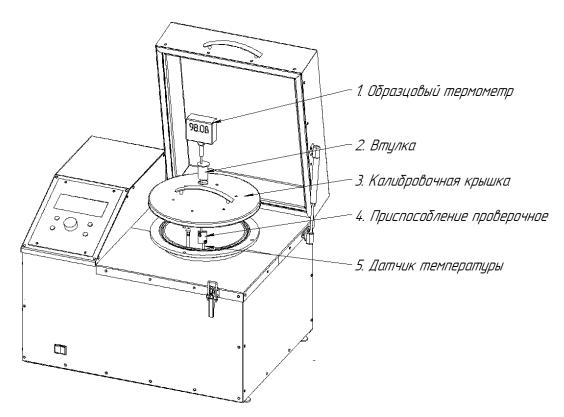


Рисунок 3 – Установка приспособления проверочного и образцового термометра

- 9.6.7 Включить аппарат и в режиме ожидания нажмите клавишу «Режим», чтобы открыть меню пользователя.
- 9.6.8 Осуществить переход «Меню»-«Настройки»-«Тест оборудования»-«Тест изм.темп.».
- 9.6.9 Ожидать до тех пор, пока на экране не отобразится надпись «Стабильно», стабилизация первой точки проверки датчика температуры (90 °C) занимает приблизительно 60-90 минут.
- 9.6.10 Снять показания датчика температуры и образцового термометра и занести их в таблицу 5.

9.6.11 Вычислить погрешность измерения температуры по следующей формуле:

$$\Delta T_1 = T_{\text{камеры}} - T_{\text{обр}}$$

где ΔT_1 – разница показаний датчика температуры камеры и образцового термометра, °С,

Т_{камеры} – показания датчика температуры камеры, °С,

Т_{обр} – показания образцового термометра, °C.

- 9.6.12 Вычисленные значения занести в таблицу 5.
- 9.6.13 $|\Delta T_1|$ не должно превышать $|0,1+\alpha|$ °C, где α погрешность образцового измерителя температуры. В противном случае необходимо провести калибровку датчика температуры.
- 9.6.14 Нажать клавишу «Пуск»
- 9.6.15 Повторить шаги 9.6.9...9.6.14 для следующих точек проверки датчика температуры: 100°C и 110°C.
- 9.6.16 По завершению проверки датчика температуры, используя теплоизоляционные материалы или рукавицы, снимите калибровочную крышку камеры и приспособление проверочное.
- 9.6.17 Выключить аппарат.
- 9.7 Проверка погрешности поддержания температуры камеры испытания и измерения времени в режиме испытания
- 9.7.1 В соответствии с Руководством по эксплуатации АИФ 2.772.028 РЭ провести испытание. Рекомендуется использовать температуру старения и образцы битума, которые используются в данной лаборатории.
- 9.7.2 Запустить секундомер в момент завершения первоначального набора давления и перехода в режим испытания (п.4.5.9 АИФ 2.772.028 РЭ).
- 9.7.3 По завершении испытания (начало сброса давления в камере) остановить секундомер.
- 9.7.4 Занести в таблицу 7 общее время испытания, и результат, полученный на секундомере. Общее время испытания должно быть в пределах 20ч ± 10 мин.
- 9.7.5 Вычислить точность измерения времени испытания по следующей формуле:

$$\Delta \tau_{\text{исп}} = 1200 \text{ мин} - \tau_{\text{обр}}$$

где $\Delta \tau_{\text{исп}}$ — разница показаний времени испытания и образцового секундомера, мин:с, $\tau_{\text{обр}}$ — показания образцового секундомера, мин:с.

- 9.7.6 Значение $|\Delta \tau_{\text{исп}}|$ не должно превышать $|10+\alpha|$ мин, где α погрешность секундомера. Вычисленные значения занести в таблицу 7.
- 9.7.7 Занести в таблицу 7 общее время ошибки регулирования температуры, отображаемое на дисплее аппарата при завершении испытания. Общее время ошибки регулирования температуры должна быть не более 60 минут.
- 9.7.8 Занести в таблицу 7 время сброса давления, отображаемое на дисплее по завершению этого процесса. Значение должно быть в диапазоне 9±1мин.
- 9.8 Идентификация программного обеспечения
- 9.8.1 Идентификация проводится для проверки соответствия программного обеспечения аппарата аттестованному. Проверку производить в следующем порядке:
- 1) Включить аппарат;
- 2) Находясь в режиме ожидания, нажать кнопку «Режим», выбрать пункт меню «Сведения», а затем «Об аппарате»;
- 3) В появившемся окне указаны версия и контрольная сумма программного обеспечения. Они должны соответствовать указанным в паспорте на аппарат.

10 Обработка, анализ и оценка результатов аттестации

Аппарат считается выдержавшей испытание, если все фактические точностные характеристики соответствуют требованиям его эксплуатационной документации.

11 Требования к отчётности

Положительные результаты аттестации оформляются в соответствии с требованиями ГОСТ Р 8.568-2017.

ПРИЛОЖЕНИЕ А. ТАБЛИЦЫ

Таблица 5 – Проверка датчика температуры камеры

Точка поддержания	90°C	100°C	110°C
температуры в			
камере			
Т _{камеры} , °С			
T _{обр} , °С			
ΔT ₁ , °C			

Таблица 6 – Проверка датчика давления

Время, мин	0	5	10	15	20	25	30
Р _{атм} , кПа							
Р _{камеры} , кПа							
Р _{обр} , кПа							
Δ Р $_1$, кПа							
Δ Р $_2$, кП $_a$							

Таблица 7 – Проведение испытания

Параметры	Показания аппарата,	т _{обр} , ч:мин:с	Δτ _{исп} , мин:с
	ч:мин:с		
Время испытания	20:00:00		
Общее время ошибки регулирования			
температуры		-	-
Время сброса давления		-	-